Chemistry

Introduction to Organic Chemistry

ORGANIC CHEMISTRY

- study of compounds that are based on carbon and have C-C bonds and C-H bonds

٠ċ٠

Carbon

- each C forms a total of four covalent bonds
- forms covalent bonds that can be

(1) single, (2) double or (3) triple bonds with other C atoms

saturated compound

- all C bonded to max. number of atoms \rightarrow 4

unsaturated compound

- 1 or more C bonded to less than 4 atoms

TWO DIMENSIONAL CHEMICAL STRUCTURES

1. Molecular Formulas

i.e. $C_6H_{12}O_6$

- show number & types of atoms
- no information on how atoms connect

2. Expanded Molecular Formulas

i.e. CH₃CH₂OH or CH₃OCH₃

- shows atoms in order that they appear in molecules
- uses brackets to indicate groups attached to chains

$$CH_{3}C(CH_{3})_{2}CH_{2}CH_{3} \rightarrow H_{3}C \xrightarrow{CH_{3}} CH_{2} CH_{2} CH_{3}$$

$$CH_{3}CH_{2}CH_{3} \rightarrow CH_{3}$$

3. Structural Drawings

a. Complete Structural Drawing

- all atoms with straight lines for bonds

b. Condensed Structural Diagram

- more compact
- does not show C-H bonds; assumed present

$$H_3C$$
— HC — CH_2 — CH_2 — OF

c. Line Structural Diagram

- the end of each line & meeting point represents a carbon atom
- hydrogen not shown; assumed present
- zig-zag pattern for single (-) and double (=) bonds
- triple (≡)bonds in straight line
- other atoms and groups written in full

ISOMERS

1. Structural Isomers

- compounds which have the SAME molecular formula, but different structures
- different shapes and bonding → different physical and chemical properties
- i.e. C_2H_6O \rightarrow a) CH_3CH_2OH

b) CH₃OCH₃

2. Geometric or Cis-Trans Isomers

- compounds which have the SAME molecular formula but different arrangement of atoms around double C=C bond.
- i.e. C₄H₈
- a) cis-2-butene
- b) trans-2-butene

THREE DIMENSIONAL STRUCTURAL DIAGRAMS

- molecules with single bonds are NOT flat!
- Wedges: atom is coming forward, out of page
- Dashed/Dotted Line: atom is receeding or going back into the page

i.e. CH₂BrCl

Homework:

Read attached file from McGraw-Hill pp. xxxiv to xxxv

Answer questions p. xxxv Q 37 & 38 and p. xxxvi Q 39 & 40

Read Nelson textbook pp.8-10

Answer p.10 Practice Problem #2 and Section Problems #1-2